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Abstract
Piezoelectric metamaterial beams have received enormous research interest for the applications
of vibration attenuation and/or energy harvesting in recent years. This paper presents a generic
modelling approach for predicting the high-frequency dynamics of piezoelectric metamaterial
beams. The spectral element method (SEM) is used to derive the dynamic stiffness matrix of a
composite piezoelectric beam segment. Boundary condition implementations are demonstrated.
Both band structure and transmittance analyses are realized. Several case studies for
piezoelectric metamaterial beams configured in different geometric/electrical forms are carried
out. The corresponding finite element (FE) models are built for verification, and a comparison
study with the transfer matrix method (TMM) is conducted. For the uniform configurations, an
almost indistinguishable difference is noted between the theoretical and FE results. For the
stepped configurations, only minor discrepancies are observed in the high-frequency responses.
The improved robustness and stability of the SEM method compared to the TMM method are
demonstrated. A further discussion has been provided to explain the cause of the high-frequency
discrepancies: sudden changes in the cross-section of the beam result in the stress concentration
effect and reduce the bending stiffness at the junction connection. Finally, the value of the
high-fidelity modelling approach is reflected through a parametric-based optimization study
towards merging the Bragg scattering and locally resonant band gaps in an example
piezoelectric metamaterial beam to achieve a wide band gap.
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1. Introduction

Metamaterials, as an emerging concept in the past two dec-
ades, have attracted lots of research attention [1–5]. Band gaps
opened in metamaterials by the local resonance (LR) mechan-
ism provide new ways for low-frequency vibration attenuation
and noise reduction. In the most beginning, LRs in metamater-
ials were realized by mechanical oscillators designed in vari-
ous forms [6–8]. Local resonant band gaps are usually very
narrow [9–11]. Researchers have devoted enormous efforts
to widening band gaps, such as designing innovative reson-
ators to produce multiple band gaps [12–14] and introducing
dynamic nonlinearities [15, 16]. For example, Tan et al [17]
proposed a dual-resonator microstructure to achieve broad-
band effective mass negativity. The consequence is that the
dual-resonator metamaterial produced two band gaps. Chen
et al [18] used dual-resonators in suppressing the vibration
of a sandwich beam. More importantly, they examined the
dissipative effect on the vibration attenuation performance of
the band gaps. Li et al [19] even extended dual-resonators to
multi-resonators and considered the damping effect in their
study. The results showed that carefully tuning the damping
could improve the generated multiple band gaps. Lu et al
[20] introduced novel two-degree-of-freedom (2DOF) res-
onators into a beam for flexural vibration suppression. The
novel 2DOF resonator could conduct translational and rota-
tional motions. The two rotational vibration modes of the
2DOF resonators induced two band gaps at low frequencies. Li
et al [21] designed a two-dimensional metamaterial with local
resonators having different types of resonances. Therefore,
the metamaterial could unsurprisingly produce multiple band
gaps. Khajehtourian and Hussein [22] investigated a metama-
terial with nonlinearity arising from the large elastic deforma-
tion. They showed that the large deformation-induced nonlin-
earity might lead to the combination of Bragg scattering (BS)
and LR band gaps. Fang et al [23] studied the wave propaga-
tion in a nonlinear metamaterial consisting of multi-atomic
chains. In addition to linear band gaps, nonlinearity-induced
chaotic bands were generated and could significantly widen
the vibration suppression bandwidth. More research on the
topic of designing broadband metamaterials can be found in
[24–28].

Using the electromechanical coupling behaviour of smart
materials, piezoelectric metamaterials with inductive or capa-
citive shunt circuits were proposed to generate electrically
controllable band gaps [29–34]. By virtue of the high trans-
formability of shunt circuits [35, 36], the band gaps of piezo-
electric metamaterials are favourably tunable without the need
to modify mechanical structures. Making band gaps tunable

and controllable also indicates the possibility of broadband
vibration attenuation [37]. For the above reason, piezoelectric
metamaterials have been widely studied. Chen et al [38]
proposed to control the equivalent stiffness of a piezoelectric
element that constitutes the spring of the local resonator by
changing the shunted negative capacitance. The LR was still
generated by the mechanical resonator but became control-
lable due to the introduction of the piezoelectric element.
This idea was then experimentally validated by Zhu et al
[39]. Rather than tuning the equivalent stiffness, the internal
capacitance of a piezoelectric element together with a shunt
inductor can generate L-C resonance. Due to the electromech-
anical coupling effect, the L-C resonance can also induce a
band gap. Thorp et al [29] performed an early study using peri-
odic piezoelectric patches to attenuate the longitudinal wave
propagation in a rod. Starting from the constitutive equations
of piezoelectric materials and using the transfer matrix method
(TMM), they developed a theoretical model to predict the
band gap behaviours. Chen et al [40] improved the theoretical
model by discarding some inappropriate assumptions adopted
in [29]. Their result matched better with the finite element (FE)
simulation result.

In terms of transverse wave propagation prohibition, Chen
et al [41] presented a study of attaching piezoelectric patches
periodically on a beam for bending vibration control. By rep-
resenting the equivalent Young’s modulus of the piezoelec-
tric material as a function of the shunted impedance and still
based on the TMM, they derived a theoretical model of that
piezoelectric metamaterial beam. However, there lacks a dir-
ect verification by comparing with the FE result as in [41]. Yi
and Collet [42] investigated a similar piezoelectric metama-
terial beam and attempted to enlarge the band gap by introdu-
cing negative capacitances. However, the transmissibility res-
ult comparison revealed a noticeable error in the theoretical
model. They pointed out that it was because the analytical for-
mula overestimated the internal capacitance of the piezoelec-
tric patch. In recent, Wang et al [43] also modelled a similar
piezoelectric metamaterial beam, but still obvious discrepan-
cies were observed in their results compared to FE-simulated
ones. For a similar piezoelectric metamaterial beam but using
a different modelling strategy, Sugino et al [44] proposed
an approach to fast estimate the band gap bounds. Bao et al
[45] designed a piezoelectric metamaterial beam with nonlin-
ear electrical shunt circuit. Their results showed that introdu-
cing the nonlinear shunt circuits could broaden the BS band
gaps. Other relevant studies on similar piezoelectric metama-
terial beams and using similar modelling techniques can be
found in [46–49]. The commonalities shared by the above
works in their theoretical modelling include: (1) the beam
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is modelled using the Euler–Bernoulli theory; (2) equivalent
Young’s modulus of the piezoelectric material is represented;
(3) the TMM is adopted.

Note that circuit resonances are usually at high frequen-
cies compared to their mechanical counterparts, implying that
the band gaps of piezoelectric metamaterial beams are often
formed in high-frequency ranges [50, 51]. Therefore, it is
obvious that Timoshenko’s beam theory [52] is more suitable
for dealing with piezoelectric metamaterial beams. In addi-
tion to metamaterials, extensive research has been conduc-
ted on piezoelectric composite beams for various applications,
employing different modelling methods. One such method is
the spectral element method (SEM). Lee and Kim [53] first
applied the SEM in analysing the dynamics of piezoelec-
tric material-covered beams. Park and Lee [54] developed an
SEM for piezoelectric composite beams by considering axial-
bending movement coupling. They verified their model by
comparing it with a corresponding FE model. Lee et al [55]
further improved the spectral element model by incorporat-
ing Timoshenko’s beam theory to investigate bending waves
in composite beams. Wang [56] employed the SEM to model
a piezoelectric beam energy harvester and emphasized the
necessity of using Timoshenko’s beam theory for thick/short
piezoelectric beams. Li and Liu [57] applied the SEM tomodel
a frame structure composed of piezoelectric rods and success-
fully suppressed vibrations in the structure using active con-
trol techniques. Wu et al [58] applied the SEM to study a
complex lattice structure with embedded piezoelectric mater-
ials without using active control techniques. Jang et al [59]
employed the SEM to study guided waves in thick beams with
bonded piezoelectric patches. Abad and Rouzegar [60] exten-
ded the SEM to analyse the dynamics of piezoelectric com-
posite plates. Ren et al [61] used the SEM to model periodic
composite phononic beams, enabling active tuning of BS band
gaps. Other relevant works utilizing the SEM for modelling
piezoelectric composites can be found in [62–65].

According to the literature review, we noticed that while
the SEM is a well-established method, its applications in
modelling and analysing LR piezoelectric metamaterials with
shunted circuits remain rare. This highlights a research gap in
the field, and our study aims to address this by applying the
SEM to the modelling and analysis of such LR piezoelectric
metamaterials with shunted circuits. In this paper, we present
a high-accuracy modelling method for piezoelectric metama-
terial beams. In section 2, the mathematical formulation of
the proposed method will be introduced. Timoshenko’s beam
theory is adopted to improve prediction accuracy in the high-
frequency range. An independent circuit governing equation is
established to fully consider the electromechanical coupling
effect rather than wrapping up the electrical impedance into
the equivalent Young’s modulus formula. In addition, instead
of the TMM, the SEM is adopted. Section 3 presents several
case studies. Rigorous comparisons with their corresponding
FE models will be demonstrated to verify the proposed mod-
elling method. Regarding the accuracy issue and the potential
value of this high-accuracy method, section 4 provides some
further discussions and a parametric case study. Finally, con-
cluding remarks are summarized in section 5.

2. Mathematical formulation

This section presents an overview of the piezoelectric metama-
terial system to be investigated and develops the mathemat-
ical formulation to pave the way for facilitating the relevant
analyses.

2.1. Model description

Figure 1 shows the schematic of a piezoelectric beam model
that many researchers have widely explored and investigated.
The beam structure consists of three layers. The top and bot-
tom layers are piezoelectric materials. The middle layer is
the substrate material that does not have the piezoelectric
effect. The surfaces of the piezoelectric layers are disposed
with electrode pairs in a periodic manner. Hence, the electrode
treatment divides the beam into segments, but which are not
physically broken up from the mechanics point of view. Each
electrode pair is shunted to an independent inductive circuit
with identical parameters as the others. Though the inductive
circuit may be a synthesis of multiple electrical components
with a resistive characteristic [66], we temporarily assume it
only contains an inductor for simplicity. Each electrode seg-
ment we defined, together with the shunt circuit, constitutes
a unit cell of the metamaterial. This paper focuses on devel-
oping a general and versatile modelling approach with higher
accuracy. We will start with the most typical model, as shown
in figure 1. More complicated configurations and models will
be demonstrated and discussed in later sections.

There exist several different ways tomake the connection of
the two piezoelectric layers in each unit cell with the external
inductive circuit. As there are two piezoelectric layers, it is nat-
ural to come up with the idea of connecting them in series or
parallel. It is also worth noting the piezoelectric polarization
issue. Different piezoelectric polarization situations require
distinct circuit implantations to realize either in-series or -
parallel connections. Figure 2 shows the close-up view of a
unit cell that is implemented with various shunt circuit config-
urations. Though circuit implantations are different for differ-
ent piezoelectric polarization situations, as long as they belong
to the same type of configuration, i.e. in-series or in-parallel
configuration, they will exhibit exactly the same macroscopic
behaviour in dynamics.

2.2. Governing equations based on Hamilton’s principle

Accurately modelling the behaviour of the piezoelectric
material is of the utmost importance in this problem.
Therefore, we begin with the constitutive law of piezoelec-
tric materials under the linear assumption. According to the
prevailing standard on piezoelectricity [67], we can use the
below equations to describe the coupling between the elastic
and electrostatic properties of the piezoelectric material:

 εp
γp
D3

=

 SE11 0 d31
0 SE55 0
d31 0 εT33

 σp
τp
E3

 (1)
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Figure 1. Schematic of a uniform piezoelectric metamaterial beam disposed with periodic electrode pairs and shunted to a series of
identical inductive circuits. The orange and grey colours denote piezoelectric and substrate (brass in this paper) materials, respectively.
Given a substrate segment, the piezoelectric segments on the top and bottom form a pair and connected in series/parallel, then shunted to an
independent inductive circuit.

Figure 2. Close-up view of the shunt circuit connection. The top and bottom piezoelectric layers are connected in series, then shunted to the
inductive circuit: (a) the top and bottom piezoelectric layers have the same polarization direction; and (b) the top and bottom piezoelectric
layers have the opposite polarization directions. The top and bottom piezoelectric layers are connected in parallel, then shunted to the
inductive circuit: (c) the top and bottom piezoelectric layers have the same polarization direction; and (d) the top and bottom piezoelectric
layers have the opposite polarization directions.

where εp is the longitudinal strain in the beam length direction;
γp is the shear strain in the beam thickness direction; σp and τp
are the corresponding longitudinal and shear stresses, respect-
ively; SE11 and SE55 are the elastic compliance constants; d31 is
the piezoelectric constant in the unit of meter per volt (mV−1);
εT33 is the dielectric permittivity at constant stress; D3 is the
electric displacement in the direction normal to the beam sur-
face; E3 is the dielectric field in the beam thickness direction.
The above equations described the strains as the functions of
the stresses. Alternatively, we can express the stresses in terms
of the strain components:

 σp
τp
E3

=

 CD11 0 −h31
0 CD55 0

−h31 0 βS33

 εp
γp
D3

 (2)

where CD11 and C
D
55 are the elastic stiffness constants; h31 is the

piezoelectric constant in the unit of voltage per meter (Vm−1);
βS33 is the permittivity constant. Equations (1) and (2) are equi-
valent to each other. Comparing the two equations, we note
that the properties of a piezoelectric material can be fully
determined by precisely defining {SE11, S

E
55, d31, ε

T
33} or {CD11,

CD55, h31, β
S
33}. The relationships between the two sets ofmater-

ial parameters can be derived as:
βS33 =

1
(εT33−d231/ SE11)

h31 = βT33d31C
D
11

CD11 =
(1/ SE11)

1−d231β
T
33(1/ SE11)

CD55 =
1
SE55

(3)

where CD55 takes the concise form as 1
/
SE55, since the shear-

related piezoelectric effect is ignored by considering that d51
is usually much smaller than d31 and the shear strain compon-
ent is much smaller than the longitudinal one. A bit unlike
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the above definitions, in commercial FE software, such as
COMSOL, one is required to input {SE11, S

E
55, d31, ε

T
33} which is

termed as the strain-charge form, or {CE11, C
E
55, e31, ε

S
33} which

is termed as the stress-charge form, for fully specifying the
properties of a piezoelectric material. Since COMSOL mod-
els will be built to verify our theoretical models, the detailed
transformation relations between the two sets of parameters
are also given out as below:{

CE11 =
1
SE11

CE55 =
1
SE55

e31 = d31CE11 εS33 = εT33 − d231
/
SE11

. (4)

Based on the constitutive equations (equation (2)), we can
write down the stresses in the piezoelectric material in terms
of the stain components:{

σp = CD11εp−D3h31

τp = CD55γp
. (5)

Moreover, under the small deflection assumption, the strain
components in the piezoelectric material can be expressed as
the functions of the transverse and rotational displacements:

εp =−∂ϕ (x, t)
∂x

y

γp = ϕ (x, t)− ∂w(x, t)
∂x

(6)

where w(x, t) is the transverse displacement of the beam,
ϕ (x, t) is the rotation angle of the beam cross-section due to
the shear deformation. The stress and strain components in
the substrate material without piezoelectric effect take simpler
forms as below:

stress:

{
σs = Esεs
τs = Gsγs

strain:


εs =−∂ϕ (x, t)

∂x
y

γs = ϕ (x, t)− ∂w(x, t)
∂x

.

(7)

The total potential energy of the piezoelectric composite
beam can be obtained [55]:

Vpotential =
1
2

ˆ

Vs

(σsεs+ τsγs)dVs+
1
2

ˆ

Vp

(σpεp+ τpγp+E3D3)dVp

(8)

where the last term in the second integral of equation (8) rep-
resents the electric potential energy stored in the piezoelec-
tric material. Substituting equations (5)–(7) into equation (8)
yields:

Vpotential =
1
2

ˆ L

x=0


[
EsIs+ 2CD11 (Ip+Aphpc)

][∂ϕ (x, t)
∂x

]2

+
(
AsGs+ 2ApC

D
55

)[
−∂w(x, t)

∂x
+ϕ (x, t)

]2

+2
(
ApD

top
3 htop31 hpc−ApD

bot
3 hbot31 hpc

) ∂ϕ (x, t)
∂x

+Apβ
S
33

[(
Dtop

3

)2
+
(
Dbot

3

)2]
dx (9)

where Is = bh3s
/
12, As = bhs, Ip = bh3p

/
12, Ap = bhp.

Taking the variation of the potential energy gives [68]:

δVpotential =
⌢
EI

∂ϕ (x, t)
∂x

δϕ (x, t)

∣∣∣∣L
x=0

−
ˆ L

x=0

⌢
EI

∂2ϕ (x, t)
∂x2

δϕ (x, t)dx

+
⌢
GA

[
∂w(x, t)

∂x
−ϕ (x, t)

]
δw(x, t)

∣∣∣∣L
x=0

−
ˆ L

x=0

⌢
GA

[
∂2w(x, t)

∂x2
− ∂ϕ (x, t)

∂x

]
δw(x, t)dx

+

ˆ L

x=0

⌢
GA

[
−∂w(x, t)

∂x
+ϕ (x, t)

]
δϕ (x, t)dx+

ˆ L

x=0
Apβ

S
33

(
Dtop

3 δDtop
3 +Dbot

3 δDbot
3

)
dx

+

ˆ L

x=0
Aphpc

(
htop31 δD

top
3 − hbot31 δD

bot
3

)
ϕ (x, t)dx+

ˆ L

x=0
Aphpc

(
Dtop

3 htop31 −Dbot
3 hbot31

)
δϕ (x, t)dx

(10)

5
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where
⌢
EI= EsIs+ 2CD11 (Ip+Aphpc),

⌢
GA=

(
AsGs+ 2ApCE55

)
.

The total kinetic energy of the piezoelectric composite beam
can be written as:

Tkinetic =
1
2

L̂

x=0

{
b(hsρs+ 2hpρp)

(
∂w(x, t)

∂t

)2

+[ρsIs+ 2ρp (Ip+Aphpc)]

(
∂ϕ (x, t)

∂t

)2
}

dx. (11)

The variation in the kinetic energy is:

δTkinetic =
⌢
ρA

∂w(x, t)
∂t

δw(x, t)

∣∣∣∣L
x=0

−
ˆ L

x=0

⌢
ρA

∂2w(x, t)
∂t2

δw(x, t)dx

+
⌢
ρI

∂ϕ (x, t)
∂t

δϕ (x, t)

∣∣∣∣L
x=0

−
ˆ L

x=0

⌢
ρI

∂2ϕ (x, t)
∂t2

δϕ (x, t)dx (12)

where
⌢
ρA= b(ρs+ 2ρp),

⌢
ρI= ρsIs+ 2ρp (Ip+Aphpc). The

virtual work done by the external force and the applied electric
field is:

δWvirtual =

L̂

x=0

fextδw(x, t)dx+

L̂

x=0

Mextδϕ (x, t)dx

+

L̂

x=0

bvtopδD
top
3 dx+

L̂

x=0

bvbotδD
bot
3 dx (13)

where f ext and Mext are the external force and moment
applied on the piezoelectric metamaterial beam, respectively.
Applying the extended Hamilton’s principle and temporarily
ignoring the external loadings, one can obtain the governing
equations of the piezoelectric metamaterial beam:

⌢
ρA

∂2w(x, t)
∂t2

+
⌢
GA

[
∂ϕ (x, t)

∂x
− ∂2w(x, t)

∂x2

]
= 0 (14)

⌢
ρI

∂2ϕ (x, t)
∂t2

+
⌢
GA

[
ϕ (x, t)− ∂w(x, t)

∂x

]
−

⌢
EI

∂2ϕ (x, t)
∂x2

+

[
Aphpc

(
htop31

)2
βS33

+
Aphpc

(
hbot31

)2
βS33

]
∂2ϕ (x, t)

∂x2
= 0 (15)


Dtop

3 =−

[
hpch

top
31

βS33

∂ϕ (x, t)
∂x

+
vtop
hpβS33

]

Dbot
3 =−

[
−
hpchbot31

βS33

∂ϕ (x, t)
∂x

+
vbot
hpβS33

] . (16)

Equation (16) contains the general governing equations of
the two piezoelectric layers operating independently. The elec-
tric charge collected by the electrodes can be obtained by
integrating the electric displacement over the electrode area. If
the top and bottom piezoelectric layers are connected in par-
allel (figures 2(a) and (b)), we have:

q(t) = b

L̂

0

Dtop
3 +Dbot

3 dx

=−
{
2bhpch31

βS33
[ϕ (L, t)−ϕ (0, t)]+

2εS33bL
hp

v(t)

}
.

(17)

If the top and bottom piezoelectric layers are connected in
series (figures 2(c) and (d)), we have:

q(t) = b

L̂

0

Dtop
3 dx

=−
{
bhpch31
βS33

[ϕ (L, t)−ϕ (0, t)]+
εS33bL
hp

v(t)
2

}
. (18)

Assume the external shunt circuit is an inductive circuit,
i.e. LI, as shown in figure 3(a), the governing equation of the
electrical domain for the in-parallel connection configuration
can be written as:

dip (t)
dt

=
d2q(t)
dt2

=−
{
Cp

d2v(t)
dt2

− θ

[
∂2ϕ (L, t)

∂t2
− ∂2ϕ (0, t)

∂t2

]}
=
v(t)
LI
(19)

where Cp = 2εS33bL
/
hp is the equivalent capacitance of the

in-parallel connected piezoelectric layers; θ = 2bhpcd31
/
SE11.

The governing equation of the electrical domain for the
in-series connection configuration is in the exactly same
form as equation (19), but Cp = εS33bL

/
2hp, which is the

equivalent capacitance of the in-series connected piezo-
electric layers and θ = bhpcd31

/
SE11. However, a purely

inductive circuit is difficult to obtain. Even an inductor
component usually has a certain resistive feature. If the
external shunt circuit has a parasitic resistor, as shown in
figure 3(b), the governing equations of the circuit can be
obtained as:

ip (t) =−
{
Cp

dv(t)
dt

− θ

[
∂ϕ (L, t)

∂t
− ∂ϕ (0, t)

∂t

]}
RLip (t)+ LI

dip (t)
dt

= v(t)

. (20)
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Figure 3. Schematic of the current flowing out of the piezoelectric element and the voltage difference across the piezoelectric element. The
lumped piezoelectric element is a simplified representation of the two piezoelectric layers connected in series or parallel: (a) the external
shunt circuit is only a single inductor; (b) the external shunt circuit consists of an inductor and a resistor in series.

2.3. Derivation of dynamic stiffness matrix

We consider the model is subjected to a harmonic excitation.
Since only the steady-state harmonic responses are of interest,
we can assume the solutions to equations (14)–(19) in the
below form: 

w(x, t) =W(x)eiωt

ϕ (x, t) = Φ (x)eiωt

v(t) = Veiωt
(21)

where i =
√
−1 is the imaginary number. By substituting the

equation (21) into equations (14)–(19) and suppressing the
time-harmonic dependence eiωt, we can transform the govern-
ing equations into the frequency domain:

⌢
GA

[
dΦ (x)
dx

− d2W(x)
dx2

]
−ω2

⌢
ρAW(x) = 0 (22)

−ω2
⌢
ρIΦ (x)+

⌢
GA

[
Φ (x)− dW(x)

dx

]
−EI

d2Φ (x)
dx2

= 0

(23)

−ω2CpV−ω2θ [Φ (L)−Φ (0)] =− V
LI

(24)

where EI=
⌢
EI ∂

2ϕ(x,t)
∂x2 − 2Aphpch

2
31

βS
33

. The general solutions to

equations (22) and (23) are assumed to be:{
W(x) = Beikx

Φ (x) = rBeikx
. (25)

It is noteworthy that the above general solutions apply to
uniform beam segments covered by piezoelectric materials.
In the subsequent case studies, we will examine models that
involve plain beam segments without piezoelectric materi-
als. The general solutions for plain beam segments without
piezoelectric coverage can be assumed in the same forms,
but the unknowns in the formulas are different. The beam
needs to be divided into distinct segments at the locations
where there are geometric or material discontinuities. Each

segment must be a uniform section to ensure the validity of
the general solutions. Substituting the assumed solutions, i.e.
equation (25), back into equations (22) and (23) yields an
eigenvalue problem[

k2
⌢
GA−ω2

⌢
ρA ik

⌢
GA

−ik
⌢
GA −ω2

⌢
ρI+k2EI+

⌢
GA

][
1
r

]
=

[
0
0

]
.

(26)

To ensure the existence of non-trivial solutions, the determ-
inant of the coefficient matrix in equation (26) has to be zero.
Thereby, we can determine the wavenumber k by solving the
following polynomial function:

k4 − ηkF
4k2 − kF

4
(
1− η1k

4
G

)
= 0 (27)

where kF = (ω
2
⌢
ρA
EI )

1
4 , kG = (ω

2
⌢
ρA

⌢
GA

)
1
4 , η1 =

⌢
ρI/

⌢
ρA, η2 =

EI/
⌢
GA, and η = η1 + η2. The four roots of equation (27) are:

k1 =
1
2

√
2ηkF 2 + 2

√
η2kF 4 − 4η1k4G+ 4

k2 =
1
2

√
2ηkF 2 − 2

√
η2kF 4 − 4η1k4G+ 4

k3 =−k1
k4 =−k2

. (28)

Given the above four wavenumbers, we can rewrite the gen-
eral solutions in equation (25) as below:{

W(x) = B1e
ik1x+B2e

ik2x+B3e
−ik1x+B4e

−ik2x

Φ (x) = r1B1e
ik1x+ r2B2e

ik2x− r1B3e
−ik1x− r2B4e

−ik2x

(29)

where rj =
i(k2j−k

4
G)

kj
, j = 1 or 2. The nodal displacements

of the piezoelectric metamaterial beam can be calculated
by substituting the nodal coordinates into equation (29):

7
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
W(0)
Φ (0)
W(L)
Φ (L)


︸ ︷︷ ︸

d

=


1 1 1 1
r1 r2 −r1 −r2
eik1L eik2L e−ik1L e−ik2L

r1eik1L r2eik2L −r1e−ik1L −r2e−ik2L


︸ ︷︷ ︸

R


B1

B2

B3

B4


︸ ︷︷ ︸

B

. (30)

The bending moment and transverse shear force distribu-
tion along a Timoshenko beam can be written as:

Q=
⌢
GA

[
∂W(x)
∂x

−Φ (x)

]
M= EI

∂Φ (x)
∂x

. (31)

The nodal forces and moments can also be related to the
displacement fields by:


−Q(0)
−M(0)
Q(L)
M(L)


︸ ︷︷ ︸

f

=


−

⌢
GA(−r1 + ik1) −

⌢
GA(−r2 + ik2) −

⌢
GA(r1 − ik1) −

⌢
GA(r2 − ik2)

−ir1k1EI −ir2k2EI −ir1k1EI −ir2k2EI
⌢
GA(−r1 + ik1)eik1L

⌢
GA(−r2 + ik2)eik2L

⌢
GA(r1 − ik1)e−ik1L

⌢
GA(r2 − ik2)e−ik2L

ir1k1EIeik1L ir2k2EIeik2L ir1k1EIe−ik1L ir2k2EIe−ik2L


︸ ︷︷ ︸

H


B1

B2

B3

B4


︸ ︷︷ ︸

B

. (32)

Therefore, we can represent the nodal forces and moments
by the nodal displacements:

f=HR−1d. (33)

Noting that the piezoelectric materials will also generate
bending moments due to the piezoelectric effect. The stress
generated by the piezoelectric effect is:

σEp =−e31E3. (34)

The superscript E denotes the electric field-induced stress
component. The electric field can be further expressed as:

E3 =

{
v(t)
hp

in parallel connection
v(t)
2hp

in series connection
. (35)

The internalmoment induced by the piezoelectric effect can
be obtained by integrating the infinitesimal moment along the
piezoelectric thickness:

Mp (x, t) =−

hs/2+hpˆ

hs/2

bσEp ydy+

−hs/2ˆ

−hs/2−hp

bσEp ydy


=−2

hs/2+hpˆ

hs/2

−be31
v(t)
hp

ydy

= θv(t) . (36)

Note that the expressions of θ varies for different
connection configurations. By omitting the time-harmonic

dependence, we can convert the above equation into the
frequency domain:

Mp = θV. (37)

On the other hand, solving equation (24) gives:

V=Θ[Φ (L)−Φ (0)] (38)

where Θ= θLIω
2

(CpLIω2−1) if the external shunt circuit contains
only a single inductor (LI); however, if the shunt circuit con-
sists of an inductor (LI) and a resistor (RL) in series, as shown
in figure 3(b),Θ= iω(RL+iωLI)

iωCp(RL+iωLI)+1 , which can be derived from
equation (20). Subsequently, by substituting equation (38) into
equation (37), we obtain:

Mp =Θθ [Φ (L)−Φ (0)] . (39)

Representing the piezoelectric effect induced bending
moments by the nodal displacements yields:


−Qp (0)
−Mp (0)
Qp (L)
Mp (L)


︸ ︷︷ ︸

fp

=


0 0 0 0
0 Θθ 0 −Θθ
0 0 0 0
0 −Θθ 0 Θθ


︸ ︷︷ ︸

Γ


W(0)
Φ (0)
W(L)
Φ (L)


︸ ︷︷ ︸

d

.

(40)
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Combining equations (32) and (40), we can relate the
nodal displacements and forces by considering the piezoelec-
tric effect:

f=
(
HR−1 +Γ

)︸ ︷︷ ︸
D(ω)

d. (41)

D(ω) in the above equation is the spectral element mat-
rix of the piezoelectric metamaterial beam. For a piezoelec-
tric metamaterial beam that consists of multiple segments, we
can construct the global dynamic stiffness matrix by assem-
bling all the spectral elements of those segments. Note that
in a piezoelectric metamaterial beam, the piezoelectric mater-
ial does not necessarily cover the entire beam. For beam seg-
ments without piezoelectric coverage, their dynamic stiffness
matrices can be readily obtained by omitting the electromech-
anical coupling terms in D(ω) in equation (41). When con-
structing the global dynamic stiffness matrix of a general
piezoelectric metamaterial beam, it is essential to consider
both types of dynamic stiffness matrices during the matrix
assembling process.

2.4. Implementation of boundary conditions

After obtaining the dynamic stiffness matrix of a single seg-
ment or the global structure, we impose the boundary condi-
tions on the derived set of equations to investigate the dynam-
ics of the piezoelectric metamaterial beam from different
aspects.

2.4.1. Floquet boundary condition. To derive the dispersion
relation of the piezoelectric metamaterial beam, we take a
representative unit cell, i.e. a single segment, and apply the
Floquet periodic boundary condition [69]. First, we convert
the dynamic stiffness matrix into the transfer matrix:

T(ω) =
[

−D−1
LRDLL −D−1

LR

DRL−DRRD
−1
LRDLL −DRRD

−1
LR

]
(42)

where DLL, DLR, DRL, and DRR are the four DLL quadrants of
the dynamic stiffness matrix D(ω). They follow the below
relationship:

D(ω) =

[
DLL DLR

DRL DRR

]
. (43)

The transfer matrix (equation (42)) relates the dynamics of
the two nodes of a segment in the below manner:


W(0)
Φ (0)
−Q(0)
−M(0)

=

[
−D−1

LR DLL −D−1
LR

DRL−DRRD−1
LR DLL −DRRD−1

LR

]
︸ ︷︷ ︸

T(ω)


W(L)
Φ (L)
Q(L)
M(L)

 .

(44)

On the other hand, the Floquet periodic boundary condition
requires

W(0)
Φ (0)
−Q(0)
−M(0)

= eiqL


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

I


W(L)
Φ (L)
Q(L)
M(L)

 (45)

where q is the wavenumber. Comparing equations (44)
and (45), we obtain a standard eigenvalue problem:∣∣T(ω)− eiqLI

∣∣= 0. (46)

For a given ω, we can solve equation (46) to derive the
corresponding wavenumber q. By plotting ω versus q, we
can sketch the band structure of the piezoelectric metamater-
ial beam. Based on the characteristics of the solution of q,
i.e. whether q is real or imaginary, we know the wave of the
corresponding frequency is a propagating or evanescent wave.
In the diagram showing only the real part of q versus ω, the
blank areas without any real solutions of q denote the band
gaps. The above analysis applies to a single segment with two
nodes. However, according to the structural geometry, a rep-
resentative unit cell may contain multiple segments. In view
of this situation, we can condense the internal nodes. We first
rewrite equation (41) as fL

fI
fR

=

 DLL DLI DLR

DIL DII DIR

DRL DRI DRR

 dL
dI
dR

 (47)

where the subscripts L, I, andR denote the left end, the internal,
and the right end nodes, respectively; dL =

[
Wlhs Φ lhs

]T
and dR =

[
Wrhs Φ rhs

]T
. Note that the Floquet periodic

condition is only applied at the boundaries, i.e. the two end
nodes, and the internal nodes are not constrained, which
implies f I = 0; thus, dI can be eliminated, and equation (47)
can be reduced to a simpler form as[

fL
fR

]
=

[
DLL−DLID−1

II DIL DLR−DLID−1
II DIR

DRL−DRID−1
II DIL DRR−DRID

−1
II DIR

]
︸ ︷︷ ︸

DCond(ω)

[
dL
dR

]
.

(48)

After dynamic condensation, we can treat DCond (ω) as that
of a single segment. Therefore, the above procedures can be
applied to obtain the transfer matrix of the condensed dynamic
stiffness matrix, and then derive the dispersion relation.

2.4.2. Clamped-free boundary condition. In the above dis-
persion relation analysis, the piezoelectric metamaterial beam
is assumed to be infinitely long. However, any practical system
has a finite length. Therefore, the transmittance of a finitely
long model is also an important figure of merit for evaluating
the actual vibration suppression performance. In this paper, we
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compute the transmittance of a finitely long model under the
clamped-free boundary condition. The left end of the piezo-
electric metamaterial beam is fixed to a clamper that is moun-
ted on a shaker. The left end can be subjected to a force or
pre-described displacement, but the rotation of the left end is
constrained to be zero. In the first case, we consider a unit force
is applied to the left end of the model. The governing equation
can be expressed as:

Dglobal


Wlhs

Φ lhs = 0
...

Wrhs

Φ rhs

=


1
0
...
0
0

 . (49)

Note that the boundary condition requires Φ lhs = 0, the
second row and the second column of the global dynamic stiff-
ness matrix Dglobal can be directly crossed out

Solving equation (50) yields the solutions of the nodal dis-
placements, i.e. Wlhs…, Wrhs and Φ rhs. The transmittance of
the piezoelectric metamaterial beam can be obtained as:

T= 20log10

(
|Wrhs|
|Wlhs|

)
. (51)

In the second case, we can apply a unit transverse displace-
ment to the left end of the model. Thereby, the governing
equation can be written as:

Dglobal


Wlhs = 1
Φ lhs = 0

...
Wrhs

Φ rhs

=


Qlhs

Mlhs
...
0
0

 . (52)

By rearranging equation (52) to make the unknown para-
meters appear on the left-hand side, we obtain:

where D(a..b, c..d) denotes the submatrix by taking the block
of the entries ranging from ath to bth row and cth column

to dth column in the global dynamic stiffness matrix Dglobal.
Equation (53) becomes easily solvable. Based on the solutions
of (53), the transmittance of the piezoelectric metamaterial
beam can then be computed as:

T= 20log10 (|Wrhs|) . (54)

In fact, equation (54) gives the same result as that calculated
by equation (51).

3. Verification case studies

In this section, several case studies are presented, and corres-
ponding FE models are built for comparison to verify the the-
oretical method developed in section 2. The multi-physics FE
software COMSOL is used for carrying out the verification. In
COMSOL, we built the corresponding models using the ‘Solid
Mechanics’ module and 2D plane-stress simulation.

3.1. Uniform configuration in parallel connection

The first case study considers a piezoelectric metamaterial
beam that is fully covered by the piezoelectric layer, as shown
in figure 1. The top and bottom piezoelectric layers in each
unit cell are connected in parallel, as shown in figure 2(a),
then shunted to the external inductive circuit, as shown in
figure 3(a). The inductance of the inductor used in this case
study is about 1.242 H, which is intended to make the LC res-
onant frequency of a unit cell, i.e. 1

/(
2π

√
LICp

)
, 800 Hz. It

is referred to as the uniform configuration in parallel connec-
tion for brevity. The material and geometric parameters of this
in-parallel configuration are listed in table 1.

Figure 4 presents the band structure of the piezoelectric
metamaterial beam configuredwith in parallel connection. The
solid black curve denotes the solution of the model established
using the SEM. The red circles represent the COMSOL result.
It is worth noting that by using the solid mechanics module
of COMSOL, we can only sweep the wavenumber and then
solve the eigenfrequency. Thus, the COMSOL simulation res-
ult only contains the real part of the wavenumber. That is why
figure 4(b) does not include the corresponding COMSOL res-
ult. The SEM is superior from this point of view, but this
does not mean that the FE method is entirely at a loss in
terms of seeking the imaginary part of the wavenumber. Using
the extended wave FE method (WFEM) [70] or construct-
ing a numerical model using the partial differential equations
(PDEs) module in COMSOL [71] are two feasible ways to
seek the imaginary solution of the wavenumber. However,
additional mathematical treatments and post-processing oper-
ations must be introduced if one wants to employ the WFEM
or the PDE method. In addition, the WFEM method and
the PDE module in FE software rely on spatial discretiza-
tion and suffer from convergence issues. High-frequency and
high-precision analyses often require extensive mesh refine-
ment, making numerical methods computationally inefficient.
In contrast, the SEM method presented in this work is an
analytical method. It provides rigorous and exact solutions
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Table 1. Material and geometric parameters of the piezoelectric metamaterial beam.

Substrate layer—Brass

Mass density ρs 7165 kg m−3 Young’s modulus Es 100 GPa
Shear modulus Gs 40 Gpa Substrate width b 10 mm
Substrate thickness hs 0.5 mm Substrate length ls 40 mm

Piezoelectric layer—PZT-5

Mass density ρp 7800 kg m−3 Young’s modulus C11
E 66 GPa

Shear modulus C55
E 21 GPa Substrate width b 10 mm

Substrate thickness hp 0.4 mm Substrate length lp 40 mm
Piezoelectric permittivity ε33

T 15.93 nF m−1 Piezoelectric constant e31 −12.54 C m−2

Figure 4. The band structure of the configuration in parallel connection with the LC resonant frequency of 800 Hz: (a) the real part and
(b) the imaginary part of the wavenumber solution. The black curves are SEM results, and the red circles are COMSOL simulation results.
The orange and cerulean strips, respectively, indicate the LR- and BS-type band gaps.

with lower computational costs. The analytical nature elimin-
ates the need for excessive mesh refinement while maintaining
computational efficiency.

After a digression for interested readers and to avoid any
misunderstanding, let us get back to the topic of this study.
From figure 4(a), we can see that the SEM result matches per-
fectly well with the COMSOL result. Two band gaps, denoted
by the colour-shaded areas in figure 4(a), occur in the band
structure plot. The first band gap forms over the frequency
range from 728.4 to 795.4 Hz, with the upper bound around the
designed LR resonant frequency of 800 Hz. According to the
theories in the existing literature [44, 72], we can speculate the
first band gap should be the LRmechanism-induced band gap,
which is referred to as the LR-type band gap hereinafter. On
the other hand, we can determine whether a band gap is formed
due to the LR or the BS mechanism by inspecting the imagin-
ary part evolution in the band gap region [73]. A sharp spike
appears in the imaginary part of the first band gap region, as
shown in figure 4(b). This observation has been widely repor-
ted for many LR metamaterials. While in the second band gap
that is formed at a higher frequency from 1008 to 1202 Hz,
the imaginary part varies much more smoothly, which is typ-
ical behaviour of BS-type band gaps. The imaginary part of
the wavenumber is also an indicator of the attenuation prop-
erty in the band gap region. Comparing the magnitudes of
the imaginary part in the two band gaps, we can predict that

the band gap will exhibit a much stronger vibration attenu-
ation ability, while the vibration attenuation region corres-
ponding to the second band gap in a practical system may be
inappreciable [32].

In addition to the band structure analysis, the transmit-
tance of a finitely long model that consists of six unit cells
is also investigated. The system parameters are the same
as listed in table 1. Complex moduli are introduced to
consider the damping effect in materials. In all the follow-
ing calculations and simulations of transmittances, the loss
factor is set to be ζ = 0.016. To be more specific, the Young’s
moduli of the substrate material and the piezoelectric mater-
ial become Ec (1+ iζ) and CE11 (1+ iζ), respectively. This
is equivalent to setting the damping ratio around the struc-
tural resonance to 0.008, which is around the common val-
ues of many engineering materials. Figure 5(a) compares the
transmittances calculated by the SEM and obtained by the
FE simulation. It can be seen that both results are in good
agreement over the spectrum under investigation. Just below
800 Hz, a vibration attenuation region appears that corres-
ponds to the first band gap predicted by the band structure
analysis in figure 4(a). Moreover, as predicted by the imagin-
ary part of the wavenumber (figure 4(b)), the attenuation cap-
ability of the second band gap is too weak, thus, its corres-
ponding vibration attenuation region is imperceptible on the
transmittance curve. Figure 5(b) shows the enlarged view of
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Figure 5. (a) The transmittance of the piezoelectric metamaterial beam consisting of six unit cells that are configured in parallel connection
and with the LC resonant frequency of 800 Hz. (b) The enlarged view of the vibration attenuation region.

Figure 6. The transmittance contour showing the dependence on the frequency and beam location: (a) the SEM result; (b) the enlarged view
of the SEM result; (c) the COMSOL result; (d) the enlarged view of the COMSOL result. The blue and green colours indicate weak and
intense vibrations, respectively. The spectral element method is much computationally efficient, and the enlarged view in figure (b) provides
more details than in figure (d).

the vibration attenuation region in figure 5(a). It is observed
that those red circles (COMSOL result) tightly stick to the
black curve (SEM result). The high accuracy of the SEM is
further verified by the delicate comparison in figure 5(b).

In section 2 when deriving the mathematical formulation,
each unit cell was treated as a two-node segment, the displace-
ment field information was concealed. In fact, the displace-
ment field along the beam can be easily retrieved by mak-
ing use of the relationship between the node displacements
and the displacement field, i.e. equation (30). To demonstrate

the versatility of the SEM, the transmittance contour that con-
tains all the information along the whole metamaterial beam
and over the entire spectrum is plotted in figure 6(a). The
COMSOL result is also provided in figure 6(c) for compar-
ison. One cannot find any big difference after a quick glance
over figures 6(a) and (c), which means the SEM result coin-
cides with the COMSOL result well. In fact, the SEM is much
more efficient, at least in our case. By using the SEM, we can
easily reduce the sweep steps to obtain a higher-resolution
contour plot. The enlarged views presented in figures 6(b)
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Figure 7. The band structure of the configuration in series connection with the shunted inductor of 1.242 H, i.e. the LC resonant frequency
of 1600 Hz: (a) the real part and (b) the imaginary part of the wavenumber solution. The black curves are SEM results, and the red circles
are COMSOL simulation results. The orange and cerulean strips, respectively, indicate the LR- and BS-type band gaps.

and (d) show that the details contained in the SEM result
are much more refined, even though the COMSOL simulation
took much longer time to produce figure 6(b).

3.2. Uniform configuration in series connection

As aforementioned, the two piezoelectric layers in each unit
cell can be connected in either parallel or series. The second
case study considers a model with the same parameters lis-
ted in table 1 but implemented in the series connection.
If we adaptively change the inductance of the inductor to
4.969 H to make the LC resonant frequency of a unit cell,
i.e. 1

/(
2π

√
LICp

)
, still be 800 Hz, the band structure and

transmittance of the in-series configuration are completely the
same as those of the in-parallel configuration presented in
section 3.1. Thus, the results are not presented to avoid duplic-
ation. Instead of fixing the LC resonant frequency, we remain
the inductor unchanged in the following study, which implies
the LC resonant frequency, i.e. 1

/(
2π

√
LICp

)
, will increase

by two times to 1600 Hz.
Figure 7 presents the band structure of the piezoelectric

metamaterial beamwith the two piezoelectric layers in the unit
cell connected in series. Unsurprisingly, the SEM result is in
good consistency with the COMSOL result. It is found that a
band gap forms from 1600 to 1650 Hz. As the LC resonant
frequency is just 1600 Hz, it can be inferred that this band gap
is quite possibly induced by the LR mechanism. In addition to
the LR-type band gap, there appears another band gap below
it, ranging from 1061 to 1108 Hz. To further ascertain the band
gap type, we can survey the imaginary part of the wavenumber,
as illustrated in figure 7(b). Since the magnitude of the imagin-
ary part varies smoothly in the first band gap, while shows up a
spike in the second band gap, we can confirm that the first and
second band gaps belong to the BS-type and LR-type, respect-
ively. This result reveals that the conclusion in [44], i.e. the
LC resonant frequency is the upper bound of the piezoelec-
tric metamaterial beam, is not always valid. According to the
study of [8], the band gap edge estimation formulas derived
by the modal method in [44] are only applicable within the

Figure 8. (a) The transmittance of the piezoelectric metamaterial
beam consisting of 6 unit cells that are configured in series
connection and with the shunted inductor of 1.242 H, i.e. the LC
resonant frequency of 1600 Hz. (b) The enlarged view of the
vibration attenuation region.

non-deep-subwavelength regions. The last point that is worth
mentioning is, similar to the result of the in-parallel config-
uration, the result of the band structure analysis for the in-
series configuration also predicts that the attenuation capab-
ility of the BS-type band gap is much weaker than that of the
LR-type one.

Subsequently, the transmittance of a finitely long model
that consists of 6 unit cells is investigated. The SEM and
COMSOL results are plotted in figure 8(a). As expected, both
results match with each other well. The transmittance result
also agrees with the prediction of the band structure analysis:
(1) a vibration attenuation region is formed around 1600 Hz,
which is the LC resonant frequency; (2) the BS-type band
gap fails to generate a noticeable vibration attenuation region
on the transmittance curve. Figure 8(b) presents the enlarged
view of the vibration attenuation region. Even after zoom-
ing in, the difference between the SEM and COMSOL results
is still negligible, which firmly proves the high accuracy of
the SEM.
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Figure 9. Schematic of a uniform piezoelectric metamaterial beam with periodic spacing between the piezoelectric layers along the beam
length direction.

3.3. Stepped configuration with periodic spacing

The adjacent unit cells of the piezoelectric metamaterial
shown in figure 1 are electrically insulated and separated but
still physically unbroken. That model represents a theoretical
design that is difficult to realize since the electrode implement-
ation is not easy, and the adopted long piezoelectric patch will
be fragile. This subsection demonstrates the versatility of the
SEM method by using it to model a more practical design, as
shown in figure 9.

Stocky and less fragile piezoelectric patches are period-
ically bonded on the substrate beam. As the piezoelectric
patches are spatially spaced, electrical insulation treatment is
not required anymore. The piezoelectric patches in each unit
cell are configured in parallel connection. The material and
geometric parameters of this configuration are still the same as
those listed in table 1, except for the piezoelectric patch length.
The substrate length of a unit cell is still 40 mm. The length
of each piezoelectric patch is 20 mm. Similar models have
ever been studied in [74–76] using the TMM method and
based on the Euler–Bernoulli theory. Figure 10 presents the
band structure result of the piezoelectric metamaterial beam
with periodic spacing. The results obtained by COMSOL and
the TMM method [74–76] are also provided for comparison.
Due to the existence of periodic spacing, mechanical imped-
ance mismatching, i.e. thickness difference & bending stiff-
ness contrast, between neighbouring segments becomes sig-
nificant. Hence, multiple evident Bragg band gaps, as can be
observed in figure 10(a), are produced over a broad frequency
range of 0–8000 Hz. From the profile of the imaginary part
illustrated in figure 10(b), we can identify that the second band
gap should belong to the LR-type as it appears like a sharp
spike. Figures 10(c) and (d) show the enlarged view around
the first two band gaps over the frequency range of 0–2000 Hz.
Moreover, figures 10(c) and (d) show the enlarged view around
the first two band gaps over the frequency range of 6000–
8000 Hz. Still, the SEM result agrees with the COMSOL sim-
ulation result, especially in the low-frequency range. Slight
discrepancies are noticed in the high-frequency range. A dis-
cussion will be presented in section 4.1 to explain the high-
frequency discrepancies.

For the TMM method used in [74–76], the results also
overlap with the SEM and COMSOL results in this low-
frequency range, as shown in figures 10(c) and (d). However,

when the frequency increases, significant discrepancies arise
in the TMM results, as observed in figures 10(e) and (f). The
fourth band gap spans over [6084, 7355] Hz, according to
the COMSOL result. The predictions by the TMM and SEM
methods are, respectively, [6305, 7477] Hz and [6204, 7360]
Hz. When comparing the upper bounds, the TMM exhibits an
error of 1.659%, while the SEM shows a much lower error of
0.068%. This highlights the improved accuracy achieved by
the SEM method, along with the utilization of Timoshenko’s
beam theory, in predicting high-frequency results. In addi-
tion to band structures, transmittance plots are presented in
figure 11. The finitely long model for generating the transmit-
tance plots consists of 6 unit cells. One can effortlessly find
three vibration attenuation valleys over the transmittance curve
shown in figure 11(a). The depths of the vibration attenuation
valleys are consistent with the predictions by the attenuation
factors, i.e. the imaginary part of wavenumbers, as manifested
in figure 10(b). The first band gap failed to produce a con-
spicuous attenuation valley since it is narrow in bandwidth
and weak in attenuation strength. Figures 11(b) and (c) present
the enlarged views of the transmittance curve around the LR
band gap region around 800 Hz and the second Bragg band
gap region around 2000–4000 Hz. As already learned from
the band structure results presented in figure 10, the transmit-
tance results in figure 11 also confirm the excellent agreement
between the SEM and COMSOL results in the low-frequency
range. However, the SEM curve marginally drifts away from
the COMSOL one in the high-frequency range.

For the TMM method used in [74–76], the correspond-
ing results shown in figure 11(b) match the COMSOL and
SEM ones only in the low-frequency range. However, upon
closer examination of the enlarged view in figure 11(b), notice-
able discrepancies persist between the TMM result and the
COMSOL and SEM results. More importantly, a critical
instability issue occurs in the numerical solution of the TMM
method over the high-frequency range beyond 2200 Hz. This
instability renders the TMM result meaningless, as demon-
strated in the enlarged view displayed in figure 11(c). This
numerical instability constitutes a significant drawback of
the standard/classical TMM method [77, 78]. Especially for
large-scale structures, such as the piezoelectric metamaterial
beam consisting of multiple cells, the TMM method involves
the successive multiplication of transfer matrices (as illus-
trated in figure 12(a)). This process accumulates round-off
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Figure 10. The band structure of the piezoelectric metamaterial beam with periodic uniform gaps, the LC resonant frequency set to 800 Hz:
(a) the real part; (b) the imaginary part. The enlarged view of the band structure over the frequency range of 0–2000 Hz: (c) the real part;
(d) the imaginary part. The enlarged view of the band structure over the frequency range of 6000–8000 Hz: (e) the real part; (f) the
imaginary part. The black curves represent the SEM results, and the red circles are the COMSOL simulation results. The orange and
cerulean strips, respectively, indicate the LR- and BS-type band gaps.

errors, leading to an ill-conditioned and extremely stiff global
transfer matrix as the frequency increases. Unlike the TMM
method, the SEM method assembles the global dynamic stiff-
ness matrix in a summative manner, as graphically depicted in
figure 12(b). In this approach, round-off errors do not multiply
as in the TMM method. Therefore, the SEM method demon-
strates significantly improved robustness and stability com-
pared to the TMM method.

The above observations highlight the limitations of the
TMM method, including the persistent discrepancies with
COMSOL and SEM results and the critical numerical instabil-
ity that arises at higher frequencies. Conversely, the SEM
method offers enhanced reliability and stability due to its sum-
mative assembly of the global dynamic stiffness matrix, mak-
ing it a preferable choice for analysing large-scale structures
such as piezoelectric metamaterial beams.
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Figure 11. (a) The transmittance of the piezoelectric metamaterial beam consisting of 6 unit cells with periodic spacing and configured in
parallel connection, with the LC resonant frequency set to 800 Hz. The enlarged view of the vibration attenuation region over the frequency
range of: (b) 720–820 Hz, and (c) 2000–5000 Hz.

Figure 12. Graphical demonstration of constructing (a) the global transfer matrix in the TMM method; and (b) the global dynamic stiffness
matrix in the SEM method.

3.4. Stepped configuration with length grading

The piezoelectric metamaterial beams in previous sections all
follow periodic patterns. In recent years, removing period-
icity and introducing grading strategies in designing metama-
terials have attracted lots of research interest [79, 80].
From the geometric and structural perspective, metamaterials
designed in grading patterns are usually more complicated,
thus imposing more difficulties in developing their models.
Following the study and model in [81], this subsection demon-
strates how to use the SEM method to model a piezoelec-
tric metamaterial beam with length grading, as shown in
figure 13.

It is referred to as the stepped configuration with length
grading hereafter. The length of the first cell is still 40 mm.
The piezoelectric coverage ratio in each cell is always 50%. It
implies the piezoelectric patch length in the first cell is 20 mm.
From left to right, the cell length reduces, and the piezoelectric
patch gets shorter as well. A grading factor δ is defined as
follows:

δg =
1
n

(
1− ln+1

l1

)
= 0.05. (55)

Strictly speaking, the structure cannot be deemed as
metamaterial after removing the periodicity. Therefore,
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Figure 13. Schematic of a piezoelectric metamaterial beam with grading piezoelectric patches. Note that the length of the segment
decreases from the left to the right. The internal capacitance of the piezoelectric element accordingly varies, thus, the shunted inductance is
adjusted to ensure the LC resonant frequency is kept the same.

Figure 14. (a) The transmittance of the piezoelectric metamaterial beam consisting of 6 unit cells with length grading, the LC resonant
frequencies are all set to 800 Hz. The enlarged view of the vibration attenuation region over the frequency range: (b) 720–820 Hz, and
(c) 2000–5000 Hz.

examining the transmittance curve to find out the attenu-
ation valleys is a more direct and reliable way to evaluate the
vibration attenuation performance. Figure 14(a) presents the
transmittance result of the stepped configuration with length
grading over the frequency range of 0–8000 Hz. Figures 14(b)
and (c) present the enlarged views over 720–820 Hz and
2000–5000 Hz, respectively. Overall, we can say that the
SEM result matches the COMSOL. At the same time, we
must admit that the discrepancy in the high-frequency range
becomes visible to the naked eye. We also used the TMM
method to calculate the transmittance of this model in the way
as in [81]. The TMM method shows less accuracy than the
SEM method in the low-frequency range and exhibits numer-
ical instability when the frequency exceeds 2600 Hz. Back to
the result itself, comparing figure 14(b) with figure 13(b), we

can find that the LR-induced vibration attenuation valley of
the stepped configuration with length grading becomes nar-
rower. This is because the grading strategy is implemented
only in cell length but not the electrical parameters. The LR
resonant frequencies are all set to 800 Hz. As the piezoelectric
patches holistically get shorter, circuit resonance produced
counteraction bending moments become weaker. Thus, the
LR-induced vibration attenuation valley becomes smaller.

Comparing figure 14(c) with figure 13(c), we can observe
that the BS-induced vibration attenuation valley becomes
much broader, starting from almost 2000 Hz and going up
beyond 5000 Hz. This broadband effect can be explained
by reminiscing the BS mechanism. It is known that Bragg
band gaps depend on lattice constants. As the lattice constant
decreases, the corresponding Bragg band gap tends to form in
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Figure 15. Schematic of a piezoelectric metamaterial beam with geometric uniformity but circuit (inductor) grading. The inductance of the
inductor shunted to the piezoelectric segment increases from the left to the right. Thus, the LC resonant frequency increases accordingly.

a higher frequency range. In the stepped configuration with
length grading, the cell length gets smaller from the left to
the right-hand side. Therefore, the BS phenomenon occurs
over different frequency ranges in different cells. As these
frequency ranges overlap, there forms a broad attenuation
region. However, the attenuation region widening is at the
sacrifice of the attenuation strength, i.e. the valley becomes
much shallower.

3.5. Stepped configuration with inductor grading

In addition to geometric parameters, grading strategies can
also be adopted in designing circuit parameters of piezoelec-
tric metamaterials [48, 82]. By virtue of assembly proced-
ures, the SEM method can also be used to model piezoelectric
metamaterials with circuit grading conveniently. This subsec-
tion considers an example case, as demonstrated in figure 15.
The geometric structure of this configuration is the same as
the previous one that is shown in figure 9. The LC resonant
frequencies of the piezoelectric cells from left to right are
labelled as f 1, f2, … The grading factor, in this case, is
defined as:

δc =
1
n

(
fn+1

f1
− 1

)
= 0.05 (56)

where f 1 = 800 Hz. The example case considers a model
consisting of 6 cells. The sequent LC resonant frequencies
gradually increase and are 840, 880, 920, 960, and 1000 Hz,
respectively.

Similarly, the transmittance of this configuration is calcu-
lated to assess its vibration attenuation performance. Note that
the required inductances to achieve those LC resonant fre-
quencies are much larger than common values. Hence, we
usually use synthetic circuits [83] to simulate those inductors
for constituting the shunt circuits of piezoelectric metamater-
ials. Parasitic resistances unavoidably exist in synthetic cir-
cuits due to the non-idealities of the practical op-amps [84].
Figures 16(a) and (b) present the results of the ideal situation
when there does not exist any parasitic resistance and the prac-
tical situation with a parasitic resistance of 300 Ω.

Again, the SEM method well predicts the transmittance
profiles. Compared with figure 11(a), it can be seen that the

Figure 16. The transmittance of the stepped configuration with
inductor grading. The model consists of 6 cells, the LC resonant
frequencies are set to 800, 840, 880, 920, 960, and 1000 Hz,
respectively. (a) The parasitic resistance of the shunt circuit is 0 Ω;
(b) The parasitic resistance of the shunt circuit is 300 Ω.

shallow attenuation valleys in the relatively high-frequency
range are almost unaffected. This is because they are formed
by the BS mechanism, which mainly depends on the lattice
constant. Since the geometric periodicity is kept untouched,
the BS-type attenuation valleys remain nearly unchanged.
However, there is a dramatic change in the LR-type attenu-
ation valley: the downward spike in the deep valley disappears,
and that fraction curve becomes rather rippled, spreading over
a broad frequency range. Figure 17 presents the enlarged
view around the LR-type attenuation valley. Compared with
figure 11(b), the single deep valley is split into pieces,
i.e. totally 6 smaller valleys with shallower depths. Each small
and shallow valley corresponds to each LR resonance. From
the width perspective, the 6 small valleys, as a whole, spread
over a broader frequency range. However, those small peaks
between the 6 valleys are undesired for vibration attenuation.
If parasitic resistances exist in the synthetic circuits, those
small peaks can be flattened and suppressed below 0 dB.
Unfortunately, the consequence is that the depths of the valleys
become further shallower. Therefore, the existence of parasitic
resistances only benefits broadband vibration attenuation but
weakens the attenuation strengths.
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Figure 17. Enlarged view of the transmittance of the stepped configuration with inductor grading over the LR-induced attenuation region.
With the increase of the parasitic resistance in the shunt circuit, the valleys and peaks within the band gap region become significantly
flattened, while the outside peaks only slightly decrease.

Figure 18. Stress distribution around the place where the cross-section abruptly changes. The contour colour indicates the stress magnitude,
and the arrows denote the principal stress directions. Stress concentration appears at the acute angled corners of the intersection.

Figure 19. Schematic of a thickness-uniform piezoelectric metamaterial beam with piezoelectric patches periodically embedded in the
substrate material. The top and bottom surfaces of the whole beam are flat.

4. Further discussion

A number of case studies presented in section 3 have verified
the versatility of the SEM method. In most cases, the SEM
results can precisely match the simulated ones. However, the
accuracy slightly reduces as the frequency increases. The
following section 4.1 discusses the reason for causing the
high-frequency discrepancy. What is the necessity of devel-
oping high-accuracy models for piezoelectric metamaterials?

Section 4.2 will present a study based on the SEM model for
merging LR and Bragg band gaps, which exemplifies the use-
fulness of the proposed method.

4.1. Cause of model accuracy degradation

One may have noticed that the SEM method consistently
exhibits high accuracy in dealing with uniform configur-
ations. Noticeable discrepancies appear in predicting the
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Figure 20. The band structure of the additional configuration, the LC resonant frequency is set to 800 Hz: (a) the real part and (b) the
imaginary part of the wavenumber solution. The black curves are SEM results, and the red circles are COMSOL simulation results. The
orange and cerulean strips, respectively, indicate the LR- and BS-type band gaps.

Figure 21. (a) The transmittance of the addition configuration consisting of 6 cells, the LC resonant frequency is set to 800 Hz. The
enlarged view of the vibration attenuation region over the frequency range: (b) 720–820 Hz, and (c) 2000–5000 Hz.

high-frequency responses of the stepped ones. It can thus be
easily deduced that the errors are attributed to the stepped
feature, i.e. the abrupt change in cross-section. When the
beam is under bending deformation, stress distribution around
the stepped interface becomes irregular, and stress concen-
tration occurs, as shown in figure 18. The stress concentra-
tion effect causes local deformation and reduces the bending
stiffness at the joint connection [85]. In other words, applying
Timoshenko’s beam theory without considering the stress con-
centration effect leads to overestimating the bending stiff-
ness at the abruptly changed cross-section. That is why those
peaks in the high-frequency ranges of figures 11, 13, and 15
predicted by the SEM method are in close proximity to those
simulated ones but at their right-hand sides.

To further prove that the discrepancies are originated from
the stepped feature in the geometry, an additional configur-
ation, as shown in figure 19, is considered. In this config-
uration, the piezoelectric patches are periodically embedded

into the substrate material without affecting the beam thick-
ness, thus, the beam is geometrically flat. The geometric and
material parameters are the same as those of the configura-
tion presented in figure 11 in section 3.3. The parallel con-
nection strategy is applied for implementing the circuits of
this configuration.

Figure 20 presents the band structure of this additional con-
figuration. It can be seen that even though the piezoelectric
patches are still distributed periodically with a certain distance
between each other, as in those stepped configurations, the
analytically computed dispersion curve can excellently match
the simulation results with an imperceptible difference in the
high-frequency range.

In addition to the band structure, transmittance curves are
compared in figure 21. Almost zero discrepancy is observed
by naked eyes in the enlarged views over both the low-
and high-frequency ranges. The red circles that represent the
simulation results stick tightly to the black curve obtained
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Figure 22. (a) Effect of inductance on the band gap formation; (b) effect of inductance on the transmittance profile for the model consisting
of 6 cells. The positions of the LR and BS band gaps swap after the inductance crossing 0.64 H. The LR and BS band gaps almost overlap
with each other when the inductance reach the critical value 0.64 H.

Figure 23. Comparison of the transmittance profiles of three cases with different inductances. The coloured heavy horizontal lines near the
bottom of the abscissa denote the attenuation region widths. The attenuation region of the case with L = 0.64 H (in the orange colour) is the
widest.

by the SEM method. According to the above analysis and
comparison studies, it can now be firmly confirmed that the
stepped feature in geometry is responsible for the model
accuracy degradation. Further refining the model by tak-
ing account of the stress concentration effect around the
abruptly changed beam cross-section could be a meaningful
prospective study.

4.2. Merging band gaps towards optimization

Though using commercial FE software can also simulate the
dynamic responses and foresee the band gap behaviour of
piezoelectric metamaterials, the analytical models developed
based on the SEM method are much more computationally
efficient. Therefore, we can carry out optimizations based
on the analytical models. This section presents a parametric-
based optimization case study for demonstration. The results

presented in this section are all obtained by the analytical
model based on the SEM method.

From the two case studies presented in sections 3.1 and 3.2,
one may have already noted that by changing the inductance,
the LR-type band gap could appear below (figure 4) or above
(figure 7) the first BS-type band gap. Therefore, we wonder
whether it is possible to couple the LR- and BS-type band
gaps by selecting an appropriate inductance. To answer this
question, we first performed a parametric study to investigate
the effect of the inductance on the band gap formation of the
piezoelectric metamaterial studied in section 3.1. Figure 22(a)
reveals how the band gap regions evolve in response to the
inductance change. Blue and orange shaded areas, respect-
ively, denote the BS and LR band gaps. The BS-type band
gap always forms around 1100 Hz since the lattice constant
is unchanged regardless of the change in the inductance. The
LR-type band gap moves down as the inductance increases
since the LR resonant frequency increases with the inductance.
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When the inductance is tuned around 0.64 H, the widths of
both the LR- and BS-type band gaps attain the maximum, and
they overlap with each other, forming a coupled wide band
gap.

Figure 22(b) illustrates the transmittance variation of the
piezoelectric metamaterial beam in the contour form. As indic-
ated by the colour bar, dark blue denotes small transmit-
tance, and light green signifies large transmittance. The dashed
curves are the borderlines of the band gaps extracted from
figure 22(a). The transmittance results conform to the band
structure prediction: the dark blue areas are within the dashed
borderlines, indicating vibration attenuation regions. The col-
our within the dashed borderlines of the BS-type band gap is
not in dark blue but also not in light green since the attenuation
strength is weak.

Three typical inductance values are selected. One is
0.64 Hz, the optimal case identified in figure 22(a). The other
two values are, respectively, picked from the two sides of
the optimal point. The transmittances of their correspond-
ing cases are compared in figure 23. The coloured heavy
horizontal lines near the bottom of the abscissa denote the
attenuation region widths. The band gaps of the three cases,
i.e. L = 0.4 H, 0.64 H, and 1 H, are 823.6–890.4 Hz, 1035.2–
1335.9 Hz, and 1351.4–1506.7 Hz, respectively. As com-
pared to the two normal cases, i.e. L = 0.4 H and 1 H, the
band gap width of the optimal one, i.e. L = 0.64 H, has
been widened by 350.1% and 93.6%, respectively. This case
study shows that after optimization based on the analytical
model, the vibration attenuation performance of the piezoelec-
tric metamaterial beam can be significantly enhanced from the
broadband perspective.

5. Conclusion

In this paper, we have presented a high-accuracy and universal
modelling approach for piezoelectric metamaterial beams.
The governing equations have been obtained based on the
constitutive equations of materials and using Hamilton’s
principle. The dynamic stiffness matrix of a general com-
posite piezoelectric beam segment shunted to any inductive
and resistive circuit has been derived. Implementation of the
boundary conditions for conducting band structure and trans-
mittance analyses has been demonstrated. Five case studies
of piezoelectric metamaterial beams in different configura-
tions have been presented to prove the versatility of the pro-
posed approach. Two configurations have a constant beam
cross-section but with different electrode connections. The
other three configurations have stepped beam cross-sections.
Length and electrical parameters grading strategies have been,
respectively, introduced in two of them. Compared to their FE
models, the high accuracy of the theoretical models developed
using the refined modelling approach has been verified. Only
minor discrepancies exist in predicting the high-frequency
responses of stepped configurations. A further discussion has
explained the reason for the accuracy degradation. Since the

stress concentration effect caused by the sudden changes in
beam cross-sections is not considered in the modelling, the
theoretical model overestimates the bending stiffness of the
beam at those joint connections. Finally, the value of the
proposed approach has been reflected by a parametric-based
optimization study for merging the BS and LR band gaps in
an example piezoelectric metamaterial beam to form a coupled
wide band gap.
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